Module artemis.interactions_methods.model_agnostic

Expand source code
from .partial_dependence_based import FriedmanHStatisticMethod, GreenwellMethod
from .performance_based import SejongOhMethod

__all__ = ["FriedmanHStatisticMethod", "GreenwellMethod", "SejongOhMethod"]

Sub-modules

artemis.interactions_methods.model_agnostic.partial_dependence_based
artemis.interactions_methods.model_agnostic.performance_based

Classes

class FriedmanHStatisticMethod (random_state: Optional[int] = None, normalized: bool = True)

Friedman's H-statistic Method for Feature Interaction Extraction.

Uses partial dependence values to calculate feature interaction strengths and feature importance.

Attributes

method : str
Method name, used also for naming column with results in ovo pd.DataFrame.
visualizer : Visualizer
Object providing visualization. Automatically created on the basis of a method and used to create visualizations.
ovo : pd.DataFrame
One versus one (pair) feature interaction values.
feature_importance : pd.DataFrame
Feature importance values.
ova : pd.DataFrame
One vs all feature interaction values.
normalized : bool
Flag determining whether interaction values are normalized. Unnrormalized version is proposed in https://www.tandfonline.com/doi/full/10.1080/10618600.2021.2007935
model : object
Explained model.
X_sampled : pd.DataFrame
Sampled data used for calculation.
features_included : List[str]
List of features for which interactions are calculated.
pairs : List[List[str]]
List of pairs of features for which interactions are calculated.
pd_calculator : PartialDependenceCalculator
Object used to calculate and store partial dependence values.
batchsize : int
Batch size used for calculation.

References

Constructor for FriedmanHStatisticMethod

Parameters

random_state : int, optional
Random state for reproducibility. Defaults to None.
normalized : bool, optional
Flag determining whether to normalize the interaction values. Normalized version is original H-statistic, unnrormalized version is square root of nominator of H statistic. Defaults to True which translates to original H-statistic.
Expand source code
class FriedmanHStatisticMethod(PartialDependenceBasedMethod):
    """
    Friedman's H-statistic Method for Feature Interaction Extraction. 
    
    Uses partial dependence values to calculate feature interaction strengths and feature importance. 

    Attributes
    ----------
    method : str 
        Method name, used also for naming column with results in `ovo` pd.DataFrame.
    visualizer : Visualizer
        Object providing visualization. Automatically created on the basis of a method and used to create visualizations.
    ovo : pd.DataFrame 
        One versus one (pair) feature interaction values. 
    feature_importance : pd.DataFrame 
        Feature importance values.
    ova : pd.DataFrame
        One vs all feature interaction values.
    normalized : bool 
        Flag determining whether interaction values are normalized.
        Unnrormalized version is proposed in https://www.tandfonline.com/doi/full/10.1080/10618600.2021.2007935
    model : object
        Explained model.
    X_sampled: pd.DataFrame
        Sampled data used for calculation.
    features_included: List[str]
        List of features for which interactions are calculated.
    pairs : List[List[str]]
        List of pairs of features for which interactions are calculated.
    pd_calculator : PartialDependenceCalculator
        Object used to calculate and store partial dependence values.
    batchsize : int
        Batch size used for calculation.

    References
    ----------
    - https://www.jstor.org/stable/pdf/30245114.pdf
    - https://www.tandfonline.com/doi/full/10.1080/10618600.2021.2007935
    """
    def __init__(self, random_state: Optional[int] = None, normalized: bool = True):
        """Constructor for FriedmanHStatisticMethod

        Parameters
        ----------
        random_state : int, optional
            Random state for reproducibility. Defaults to None.
        normalized : bool, optional 
            Flag determining whether to normalize the interaction values. Normalized version is original H-statistic, 
            unnrormalized version is square root of nominator of H statistic. Defaults to True which translates to original H-statistic.
        """
        super().__init__(InteractionMethod.H_STATISTIC, random_state=random_state)
        self.ova = None
        self.normalized = normalized

    def fit(self,
            model,
            X: pd.DataFrame,
            n: Optional[int] = None,
            predict_function: Optional[Callable] = None,
            features: Optional[List[str]] = None,
            show_progress: bool = False,
            batchsize: int = 2000,
            pd_calculator: Optional[PartialDependenceCalculator] = None,
            calculate_ova: bool = True):
        """Calculates H-statistic Feature Interactions Strength and Feature Importance for the given model. 
        Despite pair interactions, this method can also calculate one vs all interactions.

        Parameters
        ----------
        model : object
            Model to be explained, should have predict_proba or predict method, or predict_function should be provided. 
        X : pd.DataFrame
            Data used to calculate interactions. If n is not None, n rows from X will be sampled. 
        n : int, optional
            Number of samples to be used for calculation of interactions. If None, all rows from X will be used. Default is None.
        predict_function : Callable, optional
            Function used to predict model output. It should take model and dataset and outputs predictions. 
            If None, `predict_proba` method will be used if it exists, otherwise `predict` method. Default is None.
        features : List[str], optional
            List of features for which interactions will be calculated. If None, all features from X will be used. Default is None.
        show_progress : bool
            If True, progress bar will be shown. Default is False.
        batchsize : int
            Batch size for calculating partial dependence. Prediction requests are collected until the batchsize is exceeded, 
            then the model is queried for predictions jointly for many observations. It speeds up the operation of the method.
            Default is 2000.
        pd_calculator : PartialDependenceCalculator, optional
            PartialDependenceCalculator object containing partial dependence values for a given model and dataset. 
            Providing this object speeds up the calculation as partial dependence values do not need to be recalculated.
            If None, it will be created from scratch. Default is None.
        calculate_ova : bool
            If True, one vs all interactions will be calculated. Default is True.
        """
        super().fit(model, X, n, predict_function, features, show_progress, batchsize, pd_calculator)
        if calculate_ova:
            self.ova = self._calculate_ova_interactions_from_pd(show_progress)

    def plot(self,
             vis_type: str = VisualizationType.HEATMAP,
             title: str = "default",
             figsize: Tuple[float, float] = (8, 6),
             **kwargs):
        """
        Plot results of explanations.

        There are five types of plots available:
        - heatmap - heatmap of feature interactions values with feature importance values on the diagonal (default)
        - bar_chart - bar chart of top feature interactions values
        - graph - graph of feature interactions values
        - bar_chart_ova - bar chart of top one vs all interactions values
        - summary - combination of other plots 
        
        Parameters
        ----------
        vis_type : str 
            Type of visualization, one of ['heatmap', 'bar_chart', 'graph', 'bar_chart_ova', 'summary']. Default is 'heatmap'.
        title : str 
            Title of plot, default is 'default' which means that title will be automatically generated for selected visualization type.
        figsize : (float, float) 
            Size of plot. Default is (8, 6).
        **kwargs : Other Parameters
            Additional parameters for plot. Passed to suitable matplotlib or seaborn functions. 
            For 'summary' visualization parameters for respective plots should be in dict with keys corresponding to visualization name. 
            See key parameters below. 

        Other Parameters
        ------------------------
        interaction_color_map : matplotlib colormap name or object, or list of colors
            Used for 'heatmap' visualization. The mapping from interaction values to color space. Default is 'Purples' or 'Purpler_r',
            depending on whether a greater value means a greater interaction strength or vice versa.
        importance_color_map :  matplotlib colormap name or object, or list of colors
            Used for 'heatmap' visualization. The mapping from importance values to color space. Default is 'Greens' or 'Greens_r',
            depending on whether a greater value means a greater interaction strength or vice versa.
        annot_fmt : str
            Used for 'heatmap' visualization. String formatting code to use when adding annotations with values. Default is '.3f'.
        linewidths : float
            Used for 'heatmap' visualization. Width of the lines that will divide each cell in matrix. Default is 0.5.
        linecolor : str
            Used for 'heatmap' visualization. Color of the lines that will divide each cell in matrix. Default is 'white'.
        cbar_shrink : float
            Used for 'heatmap' visualization. Fraction by which to multiply the size of the colorbar. Default is 1. 
    
        top_k : int 
            Used for 'bar_chart' and 'bar_chart_ova' visualizations. Maximum number of pairs that will be presented in plot. Default is 10.
        color : str 
            Used for 'bar_chart' and 'bar_chart_ova' visualizations. Color of bars. Default is 'mediumpurple'.

        n_highest_with_labels : int
            Used for 'graph' visualization. Top most important interactions to show as labels on edges.  Default is 5.
        edge_color: str
            Used for 'graph' visualization. Color of the edges. Default is 'rebeccapurple.
        node_color: str
            Used for 'graph' visualization. Color of nodes. Default is 'green'.
        node_size: int
            Used for 'graph' visualization. Size of the nodes (networkX scale).  Default is '1800'.
        font_color: str
            Used for 'graph' visualization. Font color. Default is '#3B1F2B'.
        font_weight: str
            Used for 'graph' visualization. Font weight. Default is 'bold'.
        font_size: int
            Used for 'graph' visualization. Font size (networkX scale). Default is 10.
        threshold_relevant_interaction : float
            Used for 'graph' visualization. Minimum (or maximum, depends on method) value of interaction to display
            corresponding edge on visualization. Default depends on the interaction method.
        """
        if self.ova is None:
            raise MethodNotFittedException(self.method)

        self.visualizer.plot(self.ovo,
                             vis_type,
                             self.ova,
                             feature_importance=self.feature_importance,
                             title=title,
                             figsize=figsize,
                             interactions_ascending_order=self._interactions_ascending_order,
                             importance_ascending_order=self._feature_importance_obj.importance_ascending_order,
                             **kwargs)

    def plot_profile(self, feature1: str, feature2: Optional[str] = None, kind: str = "colormesh", cmap: str = "RdYlBu_r", figsize: Tuple[float, float] = (14, 12)):
        return super().plot_profile(feature1, feature2, kind, cmap, figsize)
    
    def plot_zenplot(self, zenpath_length: int = 7, kind: str = "colormesh", cmap: str = "RdYlBu_r", figsize: Tuple[float, float] = (14, 12)):
        return super().plot_zenplot(zenpath_length, kind, cmap, figsize)

    def _calculate_ova_interactions_from_pd(self, show_progress: bool) -> pd.DataFrame:
        self.pd_calculator.calculate_pd_minus_single(self.features_included, show_progress=show_progress)
        preds = self.predict_function(self.model, self.X_sampled)
        value_minus_single = []
        for feature in self.features_included:
            pd_f = self.pd_calculator.get_pd_single(feature, feature_values=self.X_sampled[feature].values)
            pd_f_minus = self.pd_calculator.get_pd_minus_single(feature)
            value_minus_single.append([feature, _calculate_hstat_value(pd_f, pd_f_minus, preds, self.normalized)])
        return pd.DataFrame(value_minus_single, columns=["Feature", InteractionMethod.H_STATISTIC
                                                         ]).sort_values(by=InteractionMethod.H_STATISTIC,
                                                                        ascending=self._interactions_ascending_order,
                                                                        ignore_index=True).fillna(0)

    def _calculate_ovo_interactions_from_pd(self, show_progress: bool):
        self.pd_calculator.calculate_pd_pairs(self.pairs, show_progress=show_progress, all_combinations=False)
        self.pd_calculator.calculate_pd_single(self.features_included, show_progress=False)
        value_pairs = []
        for pair in self.pairs:
            pd_f1 = self.pd_calculator.get_pd_single(pair[0], feature_values=self.X_sampled[pair[0]].values)
            pd_f2 = self.pd_calculator.get_pd_single(pair[1], feature_values=self.X_sampled[pair[1]].values)
            pair_feature_values = list(zip(self.X_sampled[pair[0]].values, self.X_sampled[pair[1]].values))
            pd_pair = self.pd_calculator.get_pd_pairs(pair[0], pair[1], feature_values=pair_feature_values)
            value_pairs.append([pair[0], pair[1], _calculate_hstat_value(pd_f1, pd_f2, pd_pair, self.normalized)])
        return pd.DataFrame(value_pairs,
                            columns=["Feature 1", "Feature 2",
                                     self.method]).sort_values(by=self.method,
                                                               ascending=self._interactions_ascending_order,
                                                               ignore_index=True).fillna(0)

Ancestors

  • artemis.interactions_methods.model_agnostic.partial_dependence_based._pdp.PartialDependenceBasedMethod
  • artemis.interactions_methods._method.FeatureInteractionMethod
  • abc.ABC

Methods

def fit(self, model, X: pandas.core.frame.DataFrame, n: Optional[int] = None, predict_function: Optional[Callable] = None, features: Optional[List[str]] = None, show_progress: bool = False, batchsize: int = 2000, pd_calculator: Optional[artemis._utilities.pd_calculator.PartialDependenceCalculator] = None, calculate_ova: bool = True)

Calculates H-statistic Feature Interactions Strength and Feature Importance for the given model. Despite pair interactions, this method can also calculate one vs all interactions.

Parameters

model : object
Model to be explained, should have predict_proba or predict method, or predict_function should be provided.
X : pd.DataFrame
Data used to calculate interactions. If n is not None, n rows from X will be sampled.
n : int, optional
Number of samples to be used for calculation of interactions. If None, all rows from X will be used. Default is None.
predict_function : Callable, optional
Function used to predict model output. It should take model and dataset and outputs predictions. If None, predict_proba method will be used if it exists, otherwise predict method. Default is None.
features : List[str], optional
List of features for which interactions will be calculated. If None, all features from X will be used. Default is None.
show_progress : bool
If True, progress bar will be shown. Default is False.
batchsize : int
Batch size for calculating partial dependence. Prediction requests are collected until the batchsize is exceeded, then the model is queried for predictions jointly for many observations. It speeds up the operation of the method. Default is 2000.
pd_calculator : PartialDependenceCalculator, optional
PartialDependenceCalculator object containing partial dependence values for a given model and dataset. Providing this object speeds up the calculation as partial dependence values do not need to be recalculated. If None, it will be created from scratch. Default is None.
calculate_ova : bool
If True, one vs all interactions will be calculated. Default is True.
Expand source code
def fit(self,
        model,
        X: pd.DataFrame,
        n: Optional[int] = None,
        predict_function: Optional[Callable] = None,
        features: Optional[List[str]] = None,
        show_progress: bool = False,
        batchsize: int = 2000,
        pd_calculator: Optional[PartialDependenceCalculator] = None,
        calculate_ova: bool = True):
    """Calculates H-statistic Feature Interactions Strength and Feature Importance for the given model. 
    Despite pair interactions, this method can also calculate one vs all interactions.

    Parameters
    ----------
    model : object
        Model to be explained, should have predict_proba or predict method, or predict_function should be provided. 
    X : pd.DataFrame
        Data used to calculate interactions. If n is not None, n rows from X will be sampled. 
    n : int, optional
        Number of samples to be used for calculation of interactions. If None, all rows from X will be used. Default is None.
    predict_function : Callable, optional
        Function used to predict model output. It should take model and dataset and outputs predictions. 
        If None, `predict_proba` method will be used if it exists, otherwise `predict` method. Default is None.
    features : List[str], optional
        List of features for which interactions will be calculated. If None, all features from X will be used. Default is None.
    show_progress : bool
        If True, progress bar will be shown. Default is False.
    batchsize : int
        Batch size for calculating partial dependence. Prediction requests are collected until the batchsize is exceeded, 
        then the model is queried for predictions jointly for many observations. It speeds up the operation of the method.
        Default is 2000.
    pd_calculator : PartialDependenceCalculator, optional
        PartialDependenceCalculator object containing partial dependence values for a given model and dataset. 
        Providing this object speeds up the calculation as partial dependence values do not need to be recalculated.
        If None, it will be created from scratch. Default is None.
    calculate_ova : bool
        If True, one vs all interactions will be calculated. Default is True.
    """
    super().fit(model, X, n, predict_function, features, show_progress, batchsize, pd_calculator)
    if calculate_ova:
        self.ova = self._calculate_ova_interactions_from_pd(show_progress)
def plot(self, vis_type: str = 'heatmap', title: str = 'default', figsize: Tuple[float, float] = (8, 6), **kwargs)

Plot results of explanations.

There are five types of plots available: - heatmap - heatmap of feature interactions values with feature importance values on the diagonal (default) - bar_chart - bar chart of top feature interactions values - graph - graph of feature interactions values - bar_chart_ova - bar chart of top one vs all interactions values - summary - combination of other plots

Parameters

vis_type : str
Type of visualization, one of ['heatmap', 'bar_chart', 'graph', 'bar_chart_ova', 'summary']. Default is 'heatmap'.
title : str
Title of plot, default is 'default' which means that title will be automatically generated for selected visualization type.
figsize : (float, float)
Size of plot. Default is (8, 6).
**kwargs : Other Parameters
Additional parameters for plot. Passed to suitable matplotlib or seaborn functions. For 'summary' visualization parameters for respective plots should be in dict with keys corresponding to visualization name. See key parameters below.

Other Parameters

interaction_color_map : matplotlib colormap name or object, or list of colors
Used for 'heatmap' visualization. The mapping from interaction values to color space. Default is 'Purples' or 'Purpler_r', depending on whether a greater value means a greater interaction strength or vice versa.
importance_color_map :  matplotlib colormap name or object, or list of colors
Used for 'heatmap' visualization. The mapping from importance values to color space. Default is 'Greens' or 'Greens_r', depending on whether a greater value means a greater interaction strength or vice versa.
annot_fmt : str
Used for 'heatmap' visualization. String formatting code to use when adding annotations with values. Default is '.3f'.
linewidths : float
Used for 'heatmap' visualization. Width of the lines that will divide each cell in matrix. Default is 0.5.
linecolor : str
Used for 'heatmap' visualization. Color of the lines that will divide each cell in matrix. Default is 'white'.
cbar_shrink : float
Used for 'heatmap' visualization. Fraction by which to multiply the size of the colorbar. Default is 1.
top_k : int
Used for 'bar_chart' and 'bar_chart_ova' visualizations. Maximum number of pairs that will be presented in plot. Default is 10.
color : str
Used for 'bar_chart' and 'bar_chart_ova' visualizations. Color of bars. Default is 'mediumpurple'.
n_highest_with_labels : int
Used for 'graph' visualization. Top most important interactions to show as labels on edges. Default is 5.
edge_color : str
Used for 'graph' visualization. Color of the edges. Default is 'rebeccapurple.
node_color : str
Used for 'graph' visualization. Color of nodes. Default is 'green'.
node_size : int
Used for 'graph' visualization. Size of the nodes (networkX scale). Default is '1800'.
font_color : str
Used for 'graph' visualization. Font color. Default is '#3B1F2B'.
font_weight : str
Used for 'graph' visualization. Font weight. Default is 'bold'.
font_size : int
Used for 'graph' visualization. Font size (networkX scale). Default is 10.
threshold_relevant_interaction : float
Used for 'graph' visualization. Minimum (or maximum, depends on method) value of interaction to display corresponding edge on visualization. Default depends on the interaction method.
Expand source code
def plot(self,
         vis_type: str = VisualizationType.HEATMAP,
         title: str = "default",
         figsize: Tuple[float, float] = (8, 6),
         **kwargs):
    """
    Plot results of explanations.

    There are five types of plots available:
    - heatmap - heatmap of feature interactions values with feature importance values on the diagonal (default)
    - bar_chart - bar chart of top feature interactions values
    - graph - graph of feature interactions values
    - bar_chart_ova - bar chart of top one vs all interactions values
    - summary - combination of other plots 
    
    Parameters
    ----------
    vis_type : str 
        Type of visualization, one of ['heatmap', 'bar_chart', 'graph', 'bar_chart_ova', 'summary']. Default is 'heatmap'.
    title : str 
        Title of plot, default is 'default' which means that title will be automatically generated for selected visualization type.
    figsize : (float, float) 
        Size of plot. Default is (8, 6).
    **kwargs : Other Parameters
        Additional parameters for plot. Passed to suitable matplotlib or seaborn functions. 
        For 'summary' visualization parameters for respective plots should be in dict with keys corresponding to visualization name. 
        See key parameters below. 

    Other Parameters
    ------------------------
    interaction_color_map : matplotlib colormap name or object, or list of colors
        Used for 'heatmap' visualization. The mapping from interaction values to color space. Default is 'Purples' or 'Purpler_r',
        depending on whether a greater value means a greater interaction strength or vice versa.
    importance_color_map :  matplotlib colormap name or object, or list of colors
        Used for 'heatmap' visualization. The mapping from importance values to color space. Default is 'Greens' or 'Greens_r',
        depending on whether a greater value means a greater interaction strength or vice versa.
    annot_fmt : str
        Used for 'heatmap' visualization. String formatting code to use when adding annotations with values. Default is '.3f'.
    linewidths : float
        Used for 'heatmap' visualization. Width of the lines that will divide each cell in matrix. Default is 0.5.
    linecolor : str
        Used for 'heatmap' visualization. Color of the lines that will divide each cell in matrix. Default is 'white'.
    cbar_shrink : float
        Used for 'heatmap' visualization. Fraction by which to multiply the size of the colorbar. Default is 1. 

    top_k : int 
        Used for 'bar_chart' and 'bar_chart_ova' visualizations. Maximum number of pairs that will be presented in plot. Default is 10.
    color : str 
        Used for 'bar_chart' and 'bar_chart_ova' visualizations. Color of bars. Default is 'mediumpurple'.

    n_highest_with_labels : int
        Used for 'graph' visualization. Top most important interactions to show as labels on edges.  Default is 5.
    edge_color: str
        Used for 'graph' visualization. Color of the edges. Default is 'rebeccapurple.
    node_color: str
        Used for 'graph' visualization. Color of nodes. Default is 'green'.
    node_size: int
        Used for 'graph' visualization. Size of the nodes (networkX scale).  Default is '1800'.
    font_color: str
        Used for 'graph' visualization. Font color. Default is '#3B1F2B'.
    font_weight: str
        Used for 'graph' visualization. Font weight. Default is 'bold'.
    font_size: int
        Used for 'graph' visualization. Font size (networkX scale). Default is 10.
    threshold_relevant_interaction : float
        Used for 'graph' visualization. Minimum (or maximum, depends on method) value of interaction to display
        corresponding edge on visualization. Default depends on the interaction method.
    """
    if self.ova is None:
        raise MethodNotFittedException(self.method)

    self.visualizer.plot(self.ovo,
                         vis_type,
                         self.ova,
                         feature_importance=self.feature_importance,
                         title=title,
                         figsize=figsize,
                         interactions_ascending_order=self._interactions_ascending_order,
                         importance_ascending_order=self._feature_importance_obj.importance_ascending_order,
                         **kwargs)
def plot_profile(self, feature1: str, feature2: Optional[str] = None, kind: str = 'colormesh', cmap: str = 'RdYlBu_r', figsize: Tuple[float, float] = (14, 12))

Plots partial dependence profile for a given feature/pair of features.

Parameters

feature1 : str
First feature.
feature2 : str, optional
Second feature. If None, profile for a single feature will be plotted. Default is None.
kind : str
Kind of plot, used only for pair of features. Can be 'colormesh' or 'contour'. Default is 'colormesh'.
cmap : str
Colormap. Default is 'RdYlBu_r'.
figsize : (float, float)
Size of plot. Default is (8, 6).
Expand source code
def plot_profile(self, feature1: str, feature2: Optional[str] = None, kind: str = "colormesh", cmap: str = "RdYlBu_r", figsize: Tuple[float, float] = (14, 12)):
    return super().plot_profile(feature1, feature2, kind, cmap, figsize)
def plot_zenplot(self, zenpath_length: int = 7, kind: str = 'colormesh', cmap: str = 'RdYlBu_r', figsize: Tuple[float, float] = (14, 12))

Plots zenplot, a grid of charts where each panel contains a PD function visualization for a different pair of features

Parameters

zenpath_length : int
Length of zenpath. Default is 7.
kind : str
Kind of plot. Can be 'colormesh' or 'contour'. Default is 'colormesh'.
cmap : str
Colormap. Default is 'RdYlBu_r'.
figsize : (float, float)
Size of plot. Default is (8, 6).

References

Expand source code
def plot_zenplot(self, zenpath_length: int = 7, kind: str = "colormesh", cmap: str = "RdYlBu_r", figsize: Tuple[float, float] = (14, 12)):
    return super().plot_zenplot(zenpath_length, kind, cmap, figsize)
class GreenwellMethod (random_state: Optional[int] = None)

Greenwell Method for Feature Interaction Extraction.

Uses partial dependence values to calculate feature interaction strengths and feature importance.

Attributes

method : str
Method name, used also for naming column with results in ovo pd.DataFrame.
visualizer : Visualizer
Object providing visualization. Automatically created on the basis of a method and used to create visualizations.
ovo : pd.DataFrame
One versus one (pair) feature interaction values.
feature_importance : pd.DataFrame
Feature importance values.
model : object
Explained model.
X_sampled : pd.DataFrame
Sampled data used for calculation.
features_included : List[str]
List of features for which interactions are calculated.
pairs : List[List[str]]
List of pairs of features for which interactions are calculated.
pd_calculator : PartialDependenceCalculator
Object used to calculate and store partial dependence values.
batchsize : int
Batch size used for calculation.

References

Constructor for GreenwellMethod

Parameters

random_state : int, optional
Random state for reproducibility. Defaults to None.
Expand source code
class GreenwellMethod(PartialDependenceBasedMethod):
    """
    Greenwell Method for Feature Interaction Extraction. 
    
    Uses partial dependence values to calculate feature interaction strengths and feature importance. 

    Attributes
    ----------
    method : str 
        Method name, used also for naming column with results in `ovo` pd.DataFrame.
    visualizer : Visualizer
        Object providing visualization. Automatically created on the basis of a method and used to create visualizations.
    ovo : pd.DataFrame 
        One versus one (pair) feature interaction values. 
    feature_importance : pd.DataFrame 
        Feature importance values.
    model : object
        Explained model.
    X_sampled: pd.DataFrame
        Sampled data used for calculation.
    features_included: List[str]
        List of features for which interactions are calculated.
    pairs : List[List[str]]
        List of pairs of features for which interactions are calculated.
    pd_calculator : PartialDependenceCalculator
        Object used to calculate and store partial dependence values.
    batchsize : int
        Batch size used for calculation.

    References
    ----------
    - https://arxiv.org/pdf/1805.04755.pdf
    """
    def __init__(self, random_state: Optional[int] = None):
        """Constructor for GreenwellMethod
        
        Parameters
        ----------
        random_state : int, optional 
            Random state for reproducibility. Defaults to None.
        """
        super().__init__(InteractionMethod.VARIABLE_INTERACTION, random_state=random_state)

    def fit(self,
            model,
            X: pd.DataFrame,
            n: Optional[int] = None,
            predict_function: Optional[Callable] = None,
            features: Optional[List[str]] = None,
            show_progress: bool = False,
            batchsize: int = 2000,
            pd_calculator: Optional[PartialDependenceCalculator] = None):
        super().fit(model, X, n, predict_function, features, show_progress, batchsize, pd_calculator)

    def plot(self,
             vis_type: str = VisualizationType.HEATMAP,
             title: str = "default",
             figsize: Tuple[float, float] = (8, 6),
             **kwargs):
        super().plot(vis_type, title, figsize, **kwargs)
    
    def plot_profile(self, feature1: str, feature2: Optional[str] = None, kind: str = "colormesh", cmap: str = "RdYlBu_r", figsize: Tuple[float, float] = (14, 12)):
        return super().plot_profile(feature1, feature2, kind, cmap, figsize)
    
    def plot_zenplot(self, zenpath_length: int = 7, kind: str = "colormesh", cmap: str = "RdYlBu_r", figsize: Tuple[float, float] = (14, 12)):
        return super().plot_zenplot(zenpath_length, kind, cmap, figsize)

    def _calculate_ovo_interactions_from_pd(self, show_progress: bool = False):
        self.pd_calculator.calculate_pd_pairs(self.pairs, show_progress=show_progress)
        value_pairs = []
        num_features, _ = split_features_num_cat(self.X_sampled, self.features_included)
        for pair in self.pairs:
            pair = self.pd_calculator._get_pair_key((pair[0], pair[1]))
            pd_values = self.pd_calculator.get_pd_pairs(pair[0], pair[1])
            res_j = np.apply_along_axis(stdev, 0, np.apply_along_axis(_calc_conditional_imp, 1, pd_values,
                                                                      is_numerical=pair[1] in num_features))
            res_i = np.apply_along_axis(stdev, 0, np.apply_along_axis(_calc_conditional_imp, 0, pd_values,
                                                                      is_numerical=pair[0] in num_features))
            value_pairs.append([pair[0], pair[1], (res_j + res_i) / 2])
        return pd.DataFrame(value_pairs, columns=["Feature 1", "Feature 2", self.method]).sort_values(
            by=self.method, ascending=self._interactions_ascending_order, ignore_index=True
        ).fillna(0)

Ancestors

  • artemis.interactions_methods.model_agnostic.partial_dependence_based._pdp.PartialDependenceBasedMethod
  • artemis.interactions_methods._method.FeatureInteractionMethod
  • abc.ABC

Methods

def fit(self, model, X: pandas.core.frame.DataFrame, n: Optional[int] = None, predict_function: Optional[Callable] = None, features: Optional[List[str]] = None, show_progress: bool = False, batchsize: int = 2000, pd_calculator: Optional[artemis._utilities.pd_calculator.PartialDependenceCalculator] = None)

Calculates Partial Dependence Based Feature Interactions Strength and Feature Importance for the given model.

Parameters

model : object
Model to be explained, should have predict_proba or predict method, or predict_function should be provided.
X : pd.DataFrame
Data used to calculate interactions. If n is not None, n rows from X will be sampled.
n : int, optional
Number of samples to be used for calculation of interactions. If None, all rows from X will be used. Default is None.
predict_function : Callable, optional
Function used to predict model output. It should take model and dataset and outputs predictions. If None, predict_proba method will be used if it exists, otherwise predict method. Default is None.
features : List[str], optional
List of features for which interactions will be calculated. If None, all features from X will be used. Default is None.
show_progress : bool
If True, progress bar will be shown. Default is False.
batchsize : int
Batch size for calculating partial dependence. Prediction requests are collected until the batchsize is exceeded, then the model is queried for predictions jointly for many observations. It speeds up the operation of the method. Default is 2000.
pd_calculator : PartialDependenceCalculator, optional
PartialDependenceCalculator object containing partial dependence values for a given model and dataset. Providing this object speeds up the calculation as partial dependence values do not need to be recalculated. If None, it will be created from scratch. Default is None.
Expand source code
def fit(self,
        model,
        X: pd.DataFrame,
        n: Optional[int] = None,
        predict_function: Optional[Callable] = None,
        features: Optional[List[str]] = None,
        show_progress: bool = False,
        batchsize: int = 2000,
        pd_calculator: Optional[PartialDependenceCalculator] = None):
    super().fit(model, X, n, predict_function, features, show_progress, batchsize, pd_calculator)
def plot(self, vis_type: str = 'heatmap', title: str = 'default', figsize: Tuple[float, float] = (8, 6), **kwargs)

Plot results of explanations.

There are four types of plots available: - heatmap - heatmap of feature interactions values with feature importance values on the diagonal (default) - bar_chart - bar chart of top feature interactions values - graph - graph of feature interactions values - summary - combination of other plots

Parameters

vis_type : str
Type of visualization, one of ['heatmap', 'bar_chart', 'graph', 'summary']. Default is 'heatmap'.
title : str
Title of plot, default is 'default' which means that title will be automatically generated for selected visualization type.
figsize : (float, float)
Size of plot. Default is (8, 6).
**kwargs : Other Parameters
Additional parameters for plot. Passed to suitable matplotlib or seaborn functions. For 'summary' visualization parameters for respective plots should be in dict with keys corresponding to visualization name. See key parameters below.

Other Parameters

interaction_color_map : matplotlib colormap name or object, or list of colors
Used for 'heatmap' visualization. The mapping from interaction values to color space. Default is 'Purples' or 'Purpler_r', depending on whether a greater value means a greater interaction strength or vice versa.
importance_color_map :  matplotlib colormap name or object, or list of colors
Used for 'heatmap' visualization. The mapping from importance values to color space. Default is 'Greens' or 'Greens_r', depending on whether a greater value means a greater interaction strength or vice versa.
annot_fmt : str
Used for 'heatmap' visualization. String formatting code to use when adding annotations with values. Default is '.3f'.
linewidths : float
Used for 'heatmap' visualization. Width of the lines that will divide each cell in matrix. Default is 0.5.
linecolor : str
Used for 'heatmap' visualization. Color of the lines that will divide each cell in matrix. Default is 'white'.
cbar_shrink : float
Used for 'heatmap' visualization. Fraction by which to multiply the size of the colorbar. Default is 1.
top_k : int
Used for 'bar_chart' visualization. Maximum number of pairs that will be presented in plot. Default is 10.
color : str
Used for 'bar_chart' visualization. Color of bars. Default is 'mediumpurple'.
n_highest_with_labels : int
Used for 'graph' visualization. Top most important interactions to show as labels on edges. Default is 5.
edge_color : str
Used for 'graph' visualization. Color of the edges. Default is 'rebeccapurple.
node_color : str
Used for 'graph' visualization. Color of nodes. Default is 'green'.
node_size : int
Used for 'graph' visualization. Size of the nodes (networkX scale). Default is '1800'.
font_color : str
Used for 'graph' visualization. Font color. Default is '#3B1F2B'.
font_weight : str
Used for 'graph' visualization. Font weight. Default is 'bold'.
font_size : int
Used for 'graph' visualization. Font size (networkX scale). Default is 10.
threshold_relevant_interaction : float
Used for 'graph' visualization. Minimum (or maximum, depends on method) value of interaction to display corresponding edge on visualization. Default depends on the interaction method.
Expand source code
def plot(self,
         vis_type: str = VisualizationType.HEATMAP,
         title: str = "default",
         figsize: Tuple[float, float] = (8, 6),
         **kwargs):
    super().plot(vis_type, title, figsize, **kwargs)
def plot_profile(self, feature1: str, feature2: Optional[str] = None, kind: str = 'colormesh', cmap: str = 'RdYlBu_r', figsize: Tuple[float, float] = (14, 12))

Plots partial dependence profile for a given feature/pair of features.

Parameters

feature1 : str
First feature.
feature2 : str, optional
Second feature. If None, profile for a single feature will be plotted. Default is None.
kind : str
Kind of plot, used only for pair of features. Can be 'colormesh' or 'contour'. Default is 'colormesh'.
cmap : str
Colormap. Default is 'RdYlBu_r'.
figsize : (float, float)
Size of plot. Default is (8, 6).
Expand source code
def plot_profile(self, feature1: str, feature2: Optional[str] = None, kind: str = "colormesh", cmap: str = "RdYlBu_r", figsize: Tuple[float, float] = (14, 12)):
    return super().plot_profile(feature1, feature2, kind, cmap, figsize)
def plot_zenplot(self, zenpath_length: int = 7, kind: str = 'colormesh', cmap: str = 'RdYlBu_r', figsize: Tuple[float, float] = (14, 12))

Plots zenplot, a grid of charts where each panel contains a PD function visualization for a different pair of features

Parameters

zenpath_length : int
Length of zenpath. Default is 7.
kind : str
Kind of plot. Can be 'colormesh' or 'contour'. Default is 'colormesh'.
cmap : str
Colormap. Default is 'RdYlBu_r'.
figsize : (float, float)
Size of plot. Default is (8, 6).

References

Expand source code
def plot_zenplot(self, zenpath_length: int = 7, kind: str = "colormesh", cmap: str = "RdYlBu_r", figsize: Tuple[float, float] = (14, 12)):
    return super().plot_zenplot(zenpath_length, kind, cmap, figsize)
class SejongOhMethod (metric: artemis._utilities.performance_metrics.Metric = <artemis._utilities.performance_metrics.RMSE object>, random_state: Optional[int] = None)

Sejong Oh's Performance Based Method for Feature Interaction Extraction.

Attributes

method : str
Method name, used also for naming column with results in ovo pd.DataFrame.
visualizer : Visualizer
Object providing visualization. Automatically created on the basis of a method and used to create visualizations.
ovo : pd.DataFrame
One versus one (pair) feature interaction values.
feature_importance : pd.DataFrame
Feature importance values.
metric : Metric
Metric used for calculating performance.
model : object
Explained model.
X_sampled : pd.DataFrame
Sampled data used for calculation.
y_sampled : np.array or pd.Series
Sampled target values used for calculation.
features_included : List[str]
List of features for which interactions are calculated.
pairs : List[List[str]]
List of pairs of features for which interactions are calculated.
random_state : int
Random state used for reproducibility.

References

Constructor for SejongOhMethod

Parameters

metric : Metric
Metric used to calculate model performance. Defaults to RMSE().
random_state : int, optional
Random state for reproducibility. Defaults to None.
Expand source code
class SejongOhMethod(FeatureInteractionMethod):
    """
    Sejong Oh's Performance Based Method for Feature Interaction Extraction. 
    
    Attributes
    ----------
    method : str 
        Method name, used also for naming column with results in `ovo` pd.DataFrame.
    visualizer : Visualizer
        Object providing visualization. Automatically created on the basis of a method and used to create visualizations.
    ovo : pd.DataFrame 
        One versus one (pair) feature interaction values. 
    feature_importance : pd.DataFrame 
        Feature importance values.
    metric : Metric
        Metric used for calculating performance.
    model : object
        Explained model.
    X_sampled: pd.DataFrame
        Sampled data used for calculation.
    y_sampled: np.array or pd.Series
        Sampled target values used for calculation.
    features_included: List[str]
        List of features for which interactions are calculated.
    pairs : List[List[str]]
        List of pairs of features for which interactions are calculated.
    random_state : int
        Random state used for reproducibility.

    References
    ----------
    - https://www.mdpi.com/2076-3417/9/23/5191
    """

    def __init__(self, metric: Metric = RMSE(), random_state: Optional[int] = None):
        """Constructor for SejongOhMethod
        
        Parameters
        ----------
        metric : Metric
            Metric used to calculate model performance. Defaults to RMSE().
        random_state : int, optional 
            Random state for reproducibility. Defaults to None.
        """
        super().__init__(InteractionMethod.PERFORMANCE_BASED, random_state)
        self.metric = metric
        self.y_sampled = None

    @property
    def _interactions_ascending_order(self):
        return False

    def plot(self, vis_type: str = VisualizationType.HEATMAP, title: str = "default",
             figsize: Tuple[float, float] = (8, 6), **kwargs):
        super().plot(vis_type, title, figsize, **kwargs)

    def fit(
            self,
            model,
            X: pd.DataFrame,
            y_true: Union[np.array, pd.Series],  
            n: int = None,
            n_repeat: int = 10,
            features: List[str] = None,
            show_progress: bool = False,
    ):  
        """Calculates Performance Based Feature Interactions Strength and Permutation Based Feature Importance for the given model.

        Parameters
        ----------
        model : object
            Model to be explained, should have predict method.
        X : pd.DataFrame
            Data used to calculate interactions. If n is not None, n rows from X will be sampled. 
        y_true : np.array or pd.Series
            Target values for X data. 
        n : int, optional
            Number of samples to be used for calculation of interactions. If None, all rows from X will be used. Default is None.
        n_repeat : int, optional
            Number of permutations. Default is 10.
        features : List[str], optional
            List of features for which interactions will be calculated. If None, all features from X will be used. Default is None.
        show_progress : bool
            If True, progress bar will be shown. Default is False.
        """
        self.X_sampled, self.y_sampled = sample_both_if_not_none(self._random_generator, X, y_true, n)
        self.features_included = all_if_none(X.columns, features)
        self.pairs = list(combinations(self.features_included, 2))
        self.ovo = _perf_based_ovo(self, model, self.X_sampled, self.y_sampled, n_repeat, show_progress)

        # calculate feature importance
        self._feature_importance_obj = PermutationImportance(self.metric)
        self.feature_importance = self._feature_importance_obj.importance(model, X=self.X_sampled,
                                                                            y_true=self.y_sampled,
                                                                            n_repeat=n_repeat,
                                                                            features=self.features_included,
                                                                            show_progress=show_progress)

Ancestors

  • artemis.interactions_methods._method.FeatureInteractionMethod
  • abc.ABC

Methods

def fit(self, model, X: pandas.core.frame.DataFrame, y_true: Union[, pandas.core.series.Series], n: int = None, n_repeat: int = 10, features: List[str] = None, show_progress: bool = False)

Calculates Performance Based Feature Interactions Strength and Permutation Based Feature Importance for the given model.

Parameters

model : object
Model to be explained, should have predict method.
X : pd.DataFrame
Data used to calculate interactions. If n is not None, n rows from X will be sampled.
y_true : np.array or pd.Series
Target values for X data.
n : int, optional
Number of samples to be used for calculation of interactions. If None, all rows from X will be used. Default is None.
n_repeat : int, optional
Number of permutations. Default is 10.
features : List[str], optional
List of features for which interactions will be calculated. If None, all features from X will be used. Default is None.
show_progress : bool
If True, progress bar will be shown. Default is False.
Expand source code
def fit(
        self,
        model,
        X: pd.DataFrame,
        y_true: Union[np.array, pd.Series],  
        n: int = None,
        n_repeat: int = 10,
        features: List[str] = None,
        show_progress: bool = False,
):  
    """Calculates Performance Based Feature Interactions Strength and Permutation Based Feature Importance for the given model.

    Parameters
    ----------
    model : object
        Model to be explained, should have predict method.
    X : pd.DataFrame
        Data used to calculate interactions. If n is not None, n rows from X will be sampled. 
    y_true : np.array or pd.Series
        Target values for X data. 
    n : int, optional
        Number of samples to be used for calculation of interactions. If None, all rows from X will be used. Default is None.
    n_repeat : int, optional
        Number of permutations. Default is 10.
    features : List[str], optional
        List of features for which interactions will be calculated. If None, all features from X will be used. Default is None.
    show_progress : bool
        If True, progress bar will be shown. Default is False.
    """
    self.X_sampled, self.y_sampled = sample_both_if_not_none(self._random_generator, X, y_true, n)
    self.features_included = all_if_none(X.columns, features)
    self.pairs = list(combinations(self.features_included, 2))
    self.ovo = _perf_based_ovo(self, model, self.X_sampled, self.y_sampled, n_repeat, show_progress)

    # calculate feature importance
    self._feature_importance_obj = PermutationImportance(self.metric)
    self.feature_importance = self._feature_importance_obj.importance(model, X=self.X_sampled,
                                                                        y_true=self.y_sampled,
                                                                        n_repeat=n_repeat,
                                                                        features=self.features_included,
                                                                        show_progress=show_progress)
def plot(self, vis_type: str = 'heatmap', title: str = 'default', figsize: Tuple[float, float] = (8, 6), **kwargs)

Plot results of explanations.

There are four types of plots available: - heatmap - heatmap of feature interactions values with feature importance values on the diagonal (default) - bar_chart - bar chart of top feature interactions values - graph - graph of feature interactions values - summary - combination of other plots

Parameters

vis_type : str
Type of visualization, one of ['heatmap', 'bar_chart', 'graph', 'summary']. Default is 'heatmap'.
title : str
Title of plot, default is 'default' which means that title will be automatically generated for selected visualization type.
figsize : (float, float)
Size of plot. Default is (8, 6).
**kwargs : Other Parameters
Additional parameters for plot. Passed to suitable matplotlib or seaborn functions. For 'summary' visualization parameters for respective plots should be in dict with keys corresponding to visualization name. See key parameters below.

Other Parameters

interaction_color_map : matplotlib colormap name or object, or list of colors
Used for 'heatmap' visualization. The mapping from interaction values to color space. Default is 'Purples' or 'Purpler_r', depending on whether a greater value means a greater interaction strength or vice versa.
importance_color_map :  matplotlib colormap name or object, or list of colors
Used for 'heatmap' visualization. The mapping from importance values to color space. Default is 'Greens' or 'Greens_r', depending on whether a greater value means a greater interaction strength or vice versa.
annot_fmt : str
Used for 'heatmap' visualization. String formatting code to use when adding annotations with values. Default is '.3f'.
linewidths : float
Used for 'heatmap' visualization. Width of the lines that will divide each cell in matrix. Default is 0.5.
linecolor : str
Used for 'heatmap' visualization. Color of the lines that will divide each cell in matrix. Default is 'white'.
cbar_shrink : float
Used for 'heatmap' visualization. Fraction by which to multiply the size of the colorbar. Default is 1.
top_k : int
Used for 'bar_chart' visualization. Maximum number of pairs that will be presented in plot. Default is 10.
color : str
Used for 'bar_chart' visualization. Color of bars. Default is 'mediumpurple'.
n_highest_with_labels : int
Used for 'graph' visualization. Top most important interactions to show as labels on edges. Default is 5.
edge_color : str
Used for 'graph' visualization. Color of the edges. Default is 'rebeccapurple.
node_color : str
Used for 'graph' visualization. Color of nodes. Default is 'green'.
node_size : int
Used for 'graph' visualization. Size of the nodes (networkX scale). Default is '1800'.
font_color : str
Used for 'graph' visualization. Font color. Default is '#3B1F2B'.
font_weight : str
Used for 'graph' visualization. Font weight. Default is 'bold'.
font_size : int
Used for 'graph' visualization. Font size (networkX scale). Default is 10.
threshold_relevant_interaction : float
Used for 'graph' visualization. Minimum (or maximum, depends on method) value of interaction to display corresponding edge on visualization. Default depends on the interaction method.
Expand source code
def plot(self, vis_type: str = VisualizationType.HEATMAP, title: str = "default",
         figsize: Tuple[float, float] = (8, 6), **kwargs):
    super().plot(vis_type, title, figsize, **kwargs)