Module artemis.visualizer
Expand source code
from ._pdp_visualizer import PartialDependenceVisualizer
__all__ = ["PartialDependenceVisualizer"]
Classes
class PartialDependenceVisualizer (model: sklearn.base.BaseEstimator, X: pandas.core.frame.DataFrame)
-
Visualizer of 1-dimensianal and 2-dimensional partial dependence plots. It wraps scikit-learn PartialDependenceDisplay.from_estimator() method, so only models implementing predict functions in scikit-learn API are supported.
Attributes
model
:sklearn.BaseEstimator
- Model for which partial dependence plot will be generated.
X
:pd.DataFrame
- Data used to calculate partial dependence functions.
Constructor for PartialDependenceVisualizer
Parameters
model
:sklearn.BaseEstimator
- Model for which partial dependence plot will be generated.
X
:pd.DataFrame
- Data used to calculate partial dependence functions.
Expand source code
class PartialDependenceVisualizer: """ Visualizer of 1-dimensianal and 2-dimensional partial dependence plots. It wraps scikit-learn PartialDependenceDisplay.from_estimator() method, so only models implementing predict functions in scikit-learn API are supported. Attributes ---------- model : sklearn.BaseEstimator Model for which partial dependence plot will be generated. X : pd.DataFrame Data used to calculate partial dependence functions. """ def __init__(self, model: BaseEstimator, X: pd.DataFrame): """Constructor for PartialDependenceVisualizer Parameters ---------- model : sklearn.BaseEstimator Model for which partial dependence plot will be generated. X : pd.DataFrame Data used to calculate partial dependence functions. """ self.model = model self.X = X def plot(self, features: List[Union[int, str, Tuple[int, int], Tuple[str, str]]], grid_resolution: int = 100, title: str = "Partial Dependence", figsize: Tuple[float, float] = (12, 6), **kwargs): """Plot partial dependence plot. Parameters ---------- features : int, str, (int, int), or (str, str) Features for which partial dependence plot will be generated. If one feature is provided, 1-dimensional PDP will be returned, two features -- 2-dimensional PDP. grid_resolution : int The number of equally spaced points on the axes of the plots, for each target feature. Default is 100. title : str Title of plot. Default is 'Partial Dependence'. figsize : (float, float) Size of plot. Default is (12, 6). **kwargs : Other Parameters Additional parameters for plot. Passed to PartialDependenceDisplay.from_estimator() method. """ fig, ax = plt.subplots(figsize=figsize) PartialDependenceDisplay.from_estimator(self.model, self.X, features, grid_resolution=grid_resolution, _ax=ax, **kwargs) ax.set_title(title)
Methods
def plot(self, features: List[Union[int, str, Tuple[int, int], Tuple[str, str]]], grid_resolution: int = 100, title: str = 'Partial Dependence', figsize: Tuple[float, float] = (12, 6), **kwargs)
-
Plot partial dependence plot.
Parameters
features
:int, str, (int, int),
or(str, str)
- Features for which partial dependence plot will be generated. If one feature is provided, 1-dimensional PDP will be returned, two features – 2-dimensional PDP.
grid_resolution
:int
- The number of equally spaced points on the axes of the plots, for each target feature. Default is 100.
title
:str
- Title of plot. Default is 'Partial Dependence'.
figsize
:(float, float)
- Size of plot. Default is (12, 6).
**kwargs
:Other Parameters
- Additional parameters for plot. Passed to PartialDependenceDisplay.from_estimator() method.
Expand source code
def plot(self, features: List[Union[int, str, Tuple[int, int], Tuple[str, str]]], grid_resolution: int = 100, title: str = "Partial Dependence", figsize: Tuple[float, float] = (12, 6), **kwargs): """Plot partial dependence plot. Parameters ---------- features : int, str, (int, int), or (str, str) Features for which partial dependence plot will be generated. If one feature is provided, 1-dimensional PDP will be returned, two features -- 2-dimensional PDP. grid_resolution : int The number of equally spaced points on the axes of the plots, for each target feature. Default is 100. title : str Title of plot. Default is 'Partial Dependence'. figsize : (float, float) Size of plot. Default is (12, 6). **kwargs : Other Parameters Additional parameters for plot. Passed to PartialDependenceDisplay.from_estimator() method. """ fig, ax = plt.subplots(figsize=figsize) PartialDependenceDisplay.from_estimator(self.model, self.X, features, grid_resolution=grid_resolution, _ax=ax, **kwargs) ax.set_title(title)